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Direct detection of trimethylamine in meat food products using
ion mobility spectrometry
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Abstract

Biogenic amines are degradation products generated by bacteria in meat products. These amines can indicate bacterial contamination or
have a carcinogenic effect to humans consuming spoiled meats; therefore, their rapid detection is essential. Trimethylamine (TMA) is a
good target for the detection of biogenic amines because its volatility. TMA was directly detected in meat food products using ion mobility
spectrometry (IMS). TMA concentrations were measured in chicken meat juice for a quantitative evaluation of the meat decaying process.
T eous
s Using these
t ecaying of
m
©

K S); Fuzzy
r

1

t
s
n
o
a
o
d
n
p
t
c
c
g

ener-

bio-
g or
obial
red in
e

tions
oxi-
hile
n in
ities
posi-
like

s are
con-
rs of
s of

0
d

he lowest detected TMA concentration in chicken juice was 0.6± 0.2 ng and the lowest detected signal for TMA in a standard aqu
olution was 0.6 ng. IMS data were processed using partial least squares (PLS) and Fuzzy rule-building expert system (FuRES).
wo chemometric methods, trimethylamine concentrations of different days of meat spoilage can be separated, indicating the d
eat products. Comparing the two methods, FuRES provided a better classification of different days of meat spoilage.
2005 Elsevier B.V. All rights reserved.
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. Introduction

The quality of meat food products can be evaluated by
he presence of some volatile or semi-volatile compounds
uch as the biogenic amines. Biogenic amines are simple
itrogen compounds derived from amino acids in which one
r all hydrogen atoms are substituted by various alkyl or
ryl radicals. Biogenic amines are formed by the activity
f bacterial amino acid decarboxylases during the degra-
ation processes of proteins. Some biogenic amines have
ames derived from corresponding amino acids; for exam-
le, histamine from histidine, tyramine from tyrosine, and

ryptamine from tryptophan. Other biogenic amines have spe-
ific names such as trimethylamine (TMA), dimethylamine,
adaverine, and putresceine[1,2]. In the human body, bio-
enic amines play important physiological roles, such as in
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the formation and maintenance of synapses and in the g
ation of endogenous amino acids[3].

Different types of food and beverage contain various
genic amines that are formed during food processin
storage and can indicate the degree of spoilage by micr
activity. Biogenic amines have been detected and measu
fish[4–9], meat[10–14], sausages[15–17], milk[18], chees
[19], vegetable products[20], wine[21], and beer[22]. Bio-
genic amines in food are metabolized by enzymatic reac
in the human body to harmless final products. Diamine
dase (DAO) detoxifies amines in the human intestine w
monoamine oxidase (MAO) performs the same functio
different tissues of the human body. Both enzyme activ
can be diminished or suppressed due to genetic predis
tion, gastrointestinal diseases, or by certain inhibitors
medicines or alcohol. In such cases, biogenic amine
introduced into the blood stream and at high enough
centrations may be toxic. Biogenic amines are precurso
carcinogenic N-nitroso compounds. Lower concentration
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biogenic amines in the blood stream may cause hypotension
through dilatation of peripheral blood vessels, headaches,
nausea, respiratory distress, abdominal cramps, and vomit-
ing. Therefore, the concentration of biogenic amines in foods
has to be evaluated so that the safe levels are maintained. An
increase in concentration of biogenic amines indicates food
spoilage, representing a threat to food safety. The most widely
detected biogenic amine is trimethylamine due to its fishy-
odor, and it has been used as an indicator of fish spoilage[8].
TMA is encountered in other food products as well[8].

Different tests and methods (organoleptic, total volatile
basic nitrogen index, TVB-N) have been used to detect
biogenic amines in food that correlate with spoilage[5].
Organoleptic tests are limited by their very high detection lim-
its therefore, other analytical methods are used such as high
performance liquid chromatography (HPLC)[13,23], gas
chromatography-flame ionization detection (GC-FID)[24],
gas chromatography-mass spectrometry (GC–MS)[25], and
capillary electrophoresis (CE)[26,27]. More recent analytical
methods used for biogenic amine detection are amperometric
bi-enzyme electrodes[6], metalloporphyrins-coated quartz
microbalance sensor array (electronic nose)[7,18], and ion
mobility spectrometry (IMS)[10].

Each of these analytical detection methods presents advan-
tages and disadvantages. Total volatile basic nitrogen index
determines the total amounts of amines but gives no indi-
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for whichK0(unk)is the ion reduced mobility for the unknown,
K0(cal)is the ion reduced mobility for the calibrant,t(cal) is drift
time of the calibrant andt(unk) is the drift time of unknown.
Nicotinamide was used as the calibrant in these studies, with
ion mobility value of 1.85 cm2 V−1 s−1 [31].

Spectra for the biogenic amines were collected with a Bar-
ringer IONSCAN 350 spectrometer in positive ion mode.
Trimethylamine ions were obtained by a charge transfer reac-
tion from the nicotinamide reagent ion used by this spectrom-
eter.

For data processing three different chemometric methods
were used: fuzzy rule-building expert system (FuRES)[33],
partial least squares (PLS)[35,36], and principal component
analysis (PCA)[34,37].

PCA is a multivariate chemometric technique that is used
to display relationships among the different spectra[34,37].
The spectra comprise the rows and the drift time measure-
ments comprise the columns of data matrixD. PCA decom-
poses the matrixD into two smaller matricesT andP as given
in Eq.(4).

D = T · P + E (4)

Matrix T comprises spectral scores as columns for each
principal component. MatrixP comprises the variable load-
ings for which each component is a row vector. The number of
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ation about the types of amines present. Chromatogr
ethods require extra sample preparation (derivatizatio

educe or eliminate column memory effects. Ion mob
pectrometry is simple, fast, highly selective, and very s
ive to a wide range of compounds making it very attrac
s a detection method for biogenic amines.

IMS characterizes chemical compounds through thei
as-phase mobilities in a weak electric field. Compounds
ifferent mobilities will have different drift times in a spe

rum and in this way they can be detected. IMS is an impo
nalytical tool for identification of chemical warfare age

28], pesticides[29], and bacterial products[30]. The ion
obility coefficient can be obtained using the drift velo
f ions in an electric field of 100 V/cm. The expression

he drift velocityvd is given in

d = KE (1)

or which K is the ion mobility coefficient andE the elec
ric field. The ions move through a counter-current of d
as under the influence of an electric field. Amines are e
tudied by IMS due to their high proton affinity. In IM
rotonated monomer, dimer, fragment ions, and com
ligomeric ions may be formed[31,32].

For constant temperature, pressure, electric field inte
nd length of drift region, reduced mobilities can be de
ined according to the formula:

0(unk) = K0(cal)t(cal)

t(unk)
(2)
olumns ofT and rows ofP is the number of principal comp
ents.E is the residual matrix. An eigenvalue of the princi
omponent obtained as the sum of squares of each scor
or (i.e., column ofT) characterizes the relative importan
f each principal component. Usually eigenvalues of pr
al components are represented as percentages of the
ataset to give the percent cumulative variance. The p
al component scores will be used to visualize the ov
elations among the spectra in the data.

PLS is related to PCA, except a common set of compon
re found between matrices of dependent and indepe
ariables[34,35]. The data matrixD comprises the indepe
ent variables and is decomposed as in Eq.(4) in T, the score
atrix andP, the loading matrix. MatrixA, that comprises th
ependent variables, is decomposed into a matrix of s
, and loadingsQ, andF is a matrix that comprises residu
rrors of the dependent variables in Eq.(5).

= U · Q + F (5)

he PLS algorithm maximizes the covariance betweenT and
. The scoresU can be computed using the scoresT and the

egression coefficients matrixB in Eq.(6).

= T · B (6)

he regression coefficients matrixB is calculated accordin
o Eq.(7)

= (TT · T)
−1

(TT · U) (7)

n this way dependent variablesA can be predicted from
ndependent variablesD using the PLS regression model.
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A fuzzy rule-building expert system is an expert system
used for spectra classification[33]. In FuRES, a classifica-
tion tree is built that is comprised of branches of temperature
constrained sigmoidal logistic functions. The logistic func-
tions minimize the classification entropy. The computational
temperature is optimized so that the first derivative of the clas-
sification entropy is maximized. The logistic functions are
optimal with respect to fuzziness. The output of the FuRES
tree will be a series of fuzzy membership functions that sum
to unity for each object.

2. Experimental

2.1. Instrumentation

The ion mobility spectrometer used in this work was
a Barringer IONSCAN 350 (Barringer Instruments Inc.,
New Providence, NJ). A schematic representation of the ion
mobility spectrometer is adapted from[38] in Fig. 1. The
spectra were acquired in positive ion mode and the instru-
ment was set for narcotics detection. The data acquisition
frequency was 80 kHz and every spectrum had 1600 data
points. The acquisition data board was a National Instru-
ments AT-MIO-16XE-10 board connected to a Pentium Pro
2 ®

i grid

width was 200�s and spectra were collected with a scan
period of 25 ms. The internal calibrant was nicotinamide with
a reduced mobility of 1.85 cm2 V−1 s−1. The following flow
parameters were established: drift flow was 200 cm3 min−1,
sample flow 200 cm3 min−1, and resultant exhaust flow was
400 cm3 min−1. The temperatures for the inlet and drift tube
were 294 and 233◦C, respectively and were kept constant
during the experiment. The sample desorption heater was set
to 300◦C. The desorber was activated when the sample was
inserted and the sample held in the heated zone for 20 s.

2.2. Materials

Standard solutions were made of trimethylamine
hydrochloride (Sigma, St. Louis, MO, 98% analytical purity)
taken directly from the container. Concentrations were:
0.2 ppm (0.2�g mL−1), 0.3 ppm (0.3�g mL−1), 0.4 ppm
(0.4�g mL−1), 0.5 ppm (0.5�g mL−1), 1 ppm (1�g mL−1),
3 ppm (3�g mL−1), and 5 ppm (5�g mL−1). Each standard
solution was prepared using class A glassware by dissolv-
ing TMA hydrochloride in 1000.0 mL of deionized water.
All standard solution concentrations were corrected for 98%
analytical purity. Solutions were homogenized for 2 h on a
stirring plate using a magnetic stirrer.

The juice from spoiled meat was collected using glass
fi ter
4 n the
00 Mhz computer. A home-built LabVIEW 5.1 virtual
nstrument was used for data acquisition. The shutter
Fig. 1. Schematic representation of Barri
ber filter disks (Fisher Scientific, Pittsburgh, PA; diame
.25 cm). The blank glass fiber filter disks were sampled i
nger IONSCAN 350 adapted from[38].
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thermal desorber unit of the IONSCAN until no background
signal was observed from any volatile contaminants before
use.

The chicken meat was dated by the labeling on package
that gave the day it was made available for sale. The liquid
from the container holding the chicken meat was collected
for the experiment. The liquid from the container was water-
based and represented a noninvasive sample of the chicken
meat. This liquid is hence referred to as chicken juice. The
pH of the chicken juice was determined to be 5.8.

Chicken juice in 10 mL aliquots was delivered to sterile
polystyrene test tubes 16 mm× 125 mm, with screw cap lids
(Fisher Scientific, Pittsburgh, PA). The test tubes with juice
were centrifuged for 10 min at 4000 rpm with a centrifuge.
After centrifuging the chicken juice only the clear part of the
liquid was decanted and used for the experiments.

Samples of TMA solutions and meat juice were collected
with a 10-�L Hamilton syringe (Hamilton Company, Reno,
NV). TMA solutions of 5�L were spotted on the fiber glass
sample disk that was inserted into the ion mobility spectrom-
eter thermal desorber. Only 1�L of chicken meat juice was
spotted on the sampling disk because the main goal was to
detect the lowest TMA concentration in the sample juice.

For the chicken juice, two sets of data were collected.
The juice was stored in a refrigerator at 6.0◦C and 2-mL
aliquots of juice were removed, put in glass vials that were
c room
t ber
o for 5
d h for
2 y the
s sign
w data
s
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a 5-day
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of [0.5, 6] ms from every point in the spectrum. Because
charge is conserved in IMS, each spectrum was normalized
to unit area. After selecting five spectra from each measure-
ment set, the model building set comprised 90 spectra and
the validation set comprised 75 spectra.

All data sets were mean-centered before PCA analysis.
The first PC correlates well with the age of the chicken
juice. Discriminant PLS was used to build a classification
model [39]. Two binary target matricesA were used. The
first grouped the spectra into good, fair, and bad, and the
second grouped the spectra into good and bad classes.

Cross-validation of the training set was used to optimize
the PLS model. Cross-validation removed each measurement
as opposed to spectrum so all five replicate spectra were
removed for each cross-validation step. The validation data
set was used for prediction. The largest estimateâi designated
the class of spectrumi. FuRES has an advantage over other
supervised classification methods in that it does not have to
configure any parameters during model building, such as the
number of latent variables in PLS and training cycles with
artificial neural networks. The classification tree was built
and evaluated using the same matrices as those used for PLS.
The same criterion as for the PLS models for class designa-
tion was used, the maximum estimate.
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losed with screw caps and allowed to decompose at
emperature. Each juice vial was aged for a different num
f days during a five days period. The first vial was aged
ays, the second for 4 days, the third for 3 days, the fourt
days and the fifth was aged for 1 day. On the sixth da

pectra were collected for each vial. A random block de
as used with five replicates for collecting spectra. This
et was used for model building.

The second data set was used for validation. Aliquo
mL juice were placed in a glass vial closed with a screw
nd allowed to decompose at room temperature. For a
eriod, spectra of chicken juice were collected daily from
ial in the hood, and analyzed using a 1�L aliquot applied
o the sampling disk, same sample volume as in the pre
ethod.

. Data processing

Several hundred spectra were acquired for each mea
ent. The model-building data set comprised 18 IMS m

urements of chicken juice. The validation data set comp
5 IMS measurements. The measurement sets of sp
ere preprocessed and then the five spectra with the la
MA peak intensities were extracted. The first preproc

ng step eliminated drift time measurements less than 0.
o remove the gating pulse from the spectra. Each spec
omprised 1560 data points after removal of the gating p
ach spectrum was baseline corrected by subtracting the
ge of the intensities of the spectra calculated from the r
. Results and discussion

The reduced mobility calculated for TMA w
.36 cm2 V−1 s−1 and corresponded to a value reporte

he literature[31]. The scores on the first two princip
omponents of the model-building data set and the valid
et are given inFigs. 2 and 3, respectively. The first princi
omponent spans the age of the samples. After the se
ay, the TMA peak was large enough to saturate

nstrument so although there is some separation of days

ig. 2. Principal component scores for the model-building data set of po
on mobility spectra of aged chicken juice. Numbers in parenthesis rep
he percentage of principal components in the data set.
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Fig. 3. Principal component scores for the validation set of positive ion
mobility spectra of aged chicken juice. Numbers in parenthesis represent
the percentage of principal components in the data set.

the spectral scores were overlapping. Therefore, different
grades of meat spoilage were grouped into fresh, fair, and
bad. The model-building and validation data sets are very
similar even though they were collected 6 days apart.

Using cross-validation by measurement and not replicate,
the optimum number of latent variables was 9 for the three
class matrix. The PLS results for the validation data are
presented in a confusion matrix given inTable 1(a). The con-
fusion matrix for the three classes gives the actual class as
rows and estimated class by column. A similar confusion
matrix was generated for FuRES classification. The FuRES
confusion matrix is given inTable 1(b). FuRES classification
tree for three classes (fresh, fair, and bad) is given inFig. 4.
These results suggested that the good and fair classes were
confused by both methods, although the FuRES method was
superior to PLS.

The fair and bad classes were combined into one class, and
the PLS and FuRES models were built for the two class binary
target matrix. The optimum number of latent variables in the
PLS model was 8 using the same cross-validation procedure.

Besides FuRES, a univariate classification model was also
used as a control that processed the TMA peak intensity. This
method was the same that would be used in a classical peak-

Table 1
Confusion matrices for classification by IMS in three classes: fresh, fair, and
b

thod

Fig. 4. FuRES classification tree for fresh (1), fair (2), and bad (3) classes.

Table 2
Confusion matrices for prediction of IMS spectra of chicken juice in two
classes: fresh and bad

Fresh Bad

(a) Confusion matrix generated using the predicted errors in PLS method
Fresh 0 15
Bad 0 60

(b) Confusion matrix generated using the predicted errors in FuRES
method

Fresh 13 2
Bad 0 60

window based algorithm. Two criteria were evaluated. The
first method classified any spectrum with a TMA peak inten-
sity larger than the maximum peak intensity in the spectra
from the fresh class of the training set as bad. The second
criterion classified any spectrum below the minimum peak
intensity in the spectra from the bad class of the training set
as good. The reason two criteria were evaluated was that the
TMA peak intensities were overlapping among the spectra in
the training set that corresponded to the fresh and bad quality
classes.

For the two class models, the results are reported in
Tables 2 and 3. as confusion matrices. The PLS model failed

Table 3
Confusion matrices for prediction of IMS spectra of chicken juice in two
classes: fresh and bad using the TMA peak height

Fresh Bad

(a) Using the intensity threshold of the largest TMA peak from the spectra
of the good class

Fresh 11 4
Bad 2 58

(b) Using the intensity threshold of the lowest TMA peak from the spectra
of the bad class

Fresh 10 5
Bad 1 59
ad

Fresh Fair Bad

(a) Confusion matrix generated using the predicted errors in PLS me
Fresh 1 13 1
Fair 0 15 0
Bad 0 45 0

(b) Confusion matrix generated using the predicted errors in FuRES
method

Fresh 10 5 0
Fair 0 15 0
Bad 0 0 45
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Fig. 5. FuRES classification tree for fresh (1) and bad (2) classes.

for the validation data set. This failure may have resulted
from overfitting of the PLS model by the cross validation
procedure, but the PLS results were in general poor for the
validation set regardless of the number of latent variables
used in the model.

The FuRES classification tree for two classes (fresh and
bad) is given inFig. 5. The control results of using univari-
ate TMA peak heights are given inTable 3. In this case, the
peak window technique worked better than the PLS model,
but not as well as FuRES. The reason is that FuRES also
takes advantage of other peaks that may appear in the spectra
besides TMA. These additional peaks could be other micro-
bial products or oligomeric TMA ions.

Trimethylamine content in meat juice was evaluated quan-
titatively using a random block design. The detection limit
of the ion mobility spectrometer was determined using a
calibration line of standard TMA solutions in water. For
each standard, three replicates were analyzed in a random
block design. The ion mobility spectra acquired from fresh
chicken juice and a 1�L of a 3 ppm TMA solution is given
in Figs. 6 and 7, respectively.

For each measurement, the TMA concentration profile
was used to select a set that comprised between 50 and 100
spectra to be averaged. Therefore, each measurement fur-
nished a single average spectrum for which the TMA peak
was the largest and stable. The peak intensity of TMA from
t libra-
t the
l tion
w ate.
T he
s e
i

ted
u n-

Fig. 6. IMS spectrum of TMA in fresh chicken juice. Reaction ion peak
(RIP) is nicotinamide.

Fig. 7. IMS spectrum of 3 ppm TMA solution. Reaction ion peak (RIP) is
nicotinamide.

dard TMA solutions added to 990�L of chicken juice.
For every sample, three replicates were obtained and TMA
peak intensity was evaluated using the same procedure as
for the TMA calibration line. Using the standard addition
method, the TMA mass was 0.6± 0.2 ng and corresponded a
to 0.6± 0.2 ppm TMA concentration in chicken juice.Fig. 9

Fig. 8. Calibration line generated for pure TMA solutions in order to deter-
mine the lowest detection limit for TMA.
his average spectrum was used for calibration. The ca
ion line with 95% confidence interval was used to define
imit of detection. The detection limit was the concentra
here the lower limit equals the upper limit at the ordin
he limit of detection within this interval was 0.6 ng. T
ensitivity was 1.12± 0.15 V ng−1 with a 95% confidenc
nterval.Fig. 8gives the TMA calibration line.

The TMA concentration in chicken juice was calcula
sing standard addition with 10�L of the aqueous sta
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Fig. 9. Calibration line generated for standard addition method. Standard
TMA solutions were added to meat juice in order to evaluate quantitatively
initial TMA concentration in juice.

gives the calibration line for TMA concentration in chicken
juice.

5. Conclusions

This work demonstrated that trimethylamine in chicken
juice (i.e., external liquid) can be detected directly and quan-
titatively evaluated using ion mobility spectrometry. The
lowest detected TMA concentration in chicken juice was
0.6± 0.2 ng and the lowest detection limit for TMA stan-
dard solutions was 0.3± 0.2 ng. The method proved to be
very sensitive and the results were reproducible. The sensi-
tivity for TMA in water was 1.12± 0.15 V ng−1 with a 95%
confidence interval. Meat juice offers a better alternative than
the raw meat for biogenic amines detection.

Although IMS is most often used as a qualitative tech-
nique, quantitative results can be obtained too. IMS may
provide a rapid screening method for meat quality using
juice. Chemometric methods used for processing the IMS
data allowed a classification of different spoilage grades for
meat juice. PLS classification of fresh and bad samples was
not able to distinguish between the two classes. Compared to
PLS, FuRES had only two misclassified spectra for the fresh
and bad evaluation. FuRES also performed better than the
classic IMS approach of using the single TMA peak occurs
i ks in
t trate
t

A

and
U rch.
T an
o tion
i The
a ous
R , and
C ons.
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