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Abstract

Biogenic amines are degradation products generated by bacteria in meat products. These amines can indicate bacterial contamination ol
have a carcinogenic effect to humans consuming spoiled meats; therefore, their rapid detection is essential. Trimethylamine (TMA) is a
good target for the detection of biogenic amines because its volatility. TMA was directly detected in meat food products using ion mobility
spectrometry (IMS). TMA concentrations were measured in chicken meat juice for a quantitative evaluation of the meat decaying process.
The lowest detected TMA concentration in chicken juice wast0062 ng and the lowest detected signal for TMA in a standard aqueous
solution was 0.6 ng. IMS data were processed using partial least squares (PLS) and Fuzzy rule-building expert system (FURES). Using these
two chemometric methods, trimethylamine concentrations of different days of meat spoilage can be separated, indicating the decaying of
meat products. Comparing the two methods, FURES provided a better classification of different days of meat spoilage.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction the formation and maintenance of synapses and in the gener-
ation of endogenous amino acii.

The quality of meat food products can be evaluated by  Different types of food and beverage contain various bio-
the presence of some volatile or semi-volatile compounds genic amines that are formed during food processing or
such as the biogenic amines. Biogenic amines are simplestorage and can indicate the degree of spoilage by microbial
nitrogen compounds derived from amino acids in which one activity. Biogenic amines have been detected and measured in
or all hydrogen atoms are substituted by various alkyl or fish[4—9], mea{10-14], sausagd&5-17], milk[18], cheese
aryl radicals. Biogenic amines are formed by the activity [19], vegetable produc{0], wine[21], and beef22]. Bio-
of bacterial amino acid decarboxylases during the degra- genic aminesin food are metabolized by enzymatic reactions
dation processes of proteins. Some biogenic amines havean the human body to harmless final products. Diamine oxi-
names derived from corresponding amino acids; for exam- dase (DAO) detoxifies amines in the human intestine while
ple, histamine from histidine, tyramine from tyrosine, and monoamine oxidase (MAQ) performs the same function in
tryptamine from tryptophan. Other biogenic amines have spe- different tissues of the human body. Both enzyme activities
cific names such as trimethylamine (TMA), dimethylamine, can be diminished or suppressed due to genetic predisposi-
cadaverine, and putresceifie?]. In the human body, bio-  tion, gastrointestinal diseases, or by certain inhibitors like
genic amines play important physiological roles, such as in medicines or alcohol. In such cases, biogenic amines are

introduced into the blood stream and at high enough con-
* Corresponding author. Tel.: +1 740 517 8458; fax: +1 740 593 0148,  Centrations may be toxic. Biogenic amines are precursors of
E-mail address: peter.harrington@ohio.edu (P.B. Harrington). carcinogenic N-nitroso compounds. Lower concentrations of
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biogenic amines in the blood stream may cause hypotensionfor whichKonk)is the ion reduced mobility for the unknown,
through dilatation of peripheral blood vessels, headaches,Kocayis the ionreduced mobility for the calibrantayis drift
nausea, respiratory distress, abdominal cramps, and vomittime of the calibrant andunk) is the drift time of unknown.
ing. Therefore, the concentration of biogenic amines in foods Nicotinamide was used as the calibrant in these studies, with
has to be evaluated so that the safe levels are maintained. Arion mobility value of 1.85 criV—1s~1 [31].

increase in concentration of biogenic amines indicates food  Spectra for the biogenic amines were collected with a Bar-
spoilage, representing a threat to food safety. The mostwidelyringer IONSCAN 350 spectrometer in positive ion mode.
detected biogenic amine is trimethylamine due to its fishy- Trimethylamine ions were obtained by a charge transfer reac-
odor, and it has been used as an indicator of fish spojége  tion from the nicotinamide reagention used by this spectrom-
TMA is encountered in other food products as w8l eter.

Different tests and methods (organoleptic, total volatile For data processing three different chemometric methods
basic nitrogen index, TVB-N) have been used to detect were used: fuzzy rule-building expert system (FURES],
biogenic amines in food that correlate with spoild&é partial least squares (PLE5,36], and principal component
Organoleptictests are limited by their very high detectionlim- analysis (PCA]34,37].
its therefore, other analytical methods are used such as high PCA is a multivariate chemometric technique that is used
performance liquid chromatography (HPL{)3,23], gas to display relationships among the different spef3g37].
chromatography-flame ionization detection (GC-F[RJ], The spectra comprise the rows and the drift time measure-
gas chromatography-mass spectrometry (GC—45]) and ments comprise the columns of data mabixPCA decom-
capillary electrophoresis (CE6,27]. More recentanalytical ~ poses the matriB into two smaller matrice¥ andP as given
methods used for biogenic amine detection are amperometricn Eq. (4).
bi-enzyme electrodef§], metalloporphyrins-coated quartz
microbalance sensor array (electronic nd3g¢}8], and ion

mobility spectrometry (IMS)10]. Matrix T comprises spectral scores as columns for each
Each ofthese analytical detection methods presents advanprincipa| Component_ Matri® Comprises the variable load-
tages and disadvantages. Total volatile basic nitrogen indeXingS for which each Component isarow vector. The number of
determines the total amounts of amines but gives no indi- columns ofT and rows oP is the number of principa| compo-
cation about the types of amines present. ChromatographichentsE is the residual matrix. An eigenvalue of the principal
methods require extra sample preparation (derivatization) to component obtained as the sum of squares of each score vec-
reduce or eliminate column memory effects. lon mobility tor (j.e., column off) characterizes the relative importance
spectrometry is simple, fast, highly selective, and very sensi- of each principal component. Usually eigenvalues of princi-
tive to a wide range of compounds making it very attractive pal components are represented as percentages of the entire
as a detection method for biogenic amines. dataset to give the percent cumulative variance. The princi-
IMS characterizes chemical compounds through their ion pal component scores will be used to visualize the overall
gas-phase mobilities in aweak electric field. Compounds with re|ations among the spectra in the data.
different mobilities will have different drift times in a spec- PLSisrelatedto PCA, exceptacommon setof components
trum and in this way they can be detected. IMSis animportant gre found between matrices of dependent and independent
analytical tool for identification of chemical warfare agents Variab|eq34’35]. The data matri® Comprises the indepen-
[28], pesticided29], and bacterial product80]. The ion  dent variables and is decomposed as in(Epjn T, the score
mOblllty coefficient can be obtained USing the drift VelOCity matrix and), the |oading matrix. MatriA’ that Comprises the
of ions in an electric field of 100 V/cm. The expreSSion for dependent Variab|e3, is decomposed into a matrix of scores

D=T -P+E 4)

the drift velocityvq is given in U, and loading®, andF is a matrix that comprises residual
errors of the dependent variables in ).

vg = KE Q)
A=U-Q+F ©)

for which K is the ion mobility coefficient and the elec-

tric field. The ions move through a counter-current of drift

gas under the influence of an electric field. Amines are easily

studied by IMS due to their high proton affinity. In IMS,

protonated monomer, dimer, fragment ions, and complexy =T .B (6)

oligomeric ions may be formef@1,32]. ) o ) ]
For constant temperature, pressure, electric field intensity, The regression coefficients matifiis calculated according

and length of drift region, reduced mobilities can be deter- to Eq.(7)

mined according to the formula: B—(1". T)fl(TT ) )

The PLS algorithm maximizes the covariance betwEand
U. The scored) can be computed using the scolléand the
regression coefficients matrin Eq. (6).

Ko(caly(ca) ) In this way dependent variables can be predicted from

Kownk) = _ . . :
I(unk) independent variabld3 using the PLS regression model.
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A fuzzy rule-building expert system is an expert system width was 20Qus and spectra were collected with a scan
used for spectra classificati¢®3]. In FURES, a classifica-  period of 25 ms. The internal calibrant was nicotinamide with
tion tree is built that is comprised of branches of temperature a reduced mobility of 1.85 ciV~1s~1. The following flow
constrained sigmoidal logistic functions. The logistic func- parameters were established: drift flow was 208 orin—1
tions minimize the classification entropy. The computational sample flow 200 cchmin—2, and resultant exhaust flow was
temperature is optimized so that the first derivative of the clas- 400 cn? min—1. The temperatures for the inlet and drift tube
sification entropy is maximized. The logistic functions are were 294 and 233C, respectively and were kept constant
optimal with respect to fuzziness. The output of the FURES during the experiment. The sample desorption heater was set
tree will be a series of fuzzy membership functions that sum to 300°C. The desorber was activated when the sample was
to unity for each object. inserted and the sample held in the heated zone for 20s.

2.2. Materials
2. Experimental
Standard solutions were made of trimethylamine
2.1. Instrumentation hydrochloride (Sigma, St. Louis, MO, 98% analytical purity)
taken directly from the container. Concentrations were:
The ion mobility spectrometer used in this work was 0.2ppm (0.2, gmL~1), 0.3ppm (0.3ugmL~1), 0.4ppm
a Barringer IONSCAN 350 (Barringer Instruments Inc., (0.4ugmL~1), 0.5ppm (0.50.g mL~1), 1 ppm (4ug mL~1),
New Providence, NJ). A schematic representation of the ion 3 ppm (3ug mL~1), and 5 ppm (j.g mL~1). Each standard
mobility spectrometer is adapted frof88] in Fig. 1. The solution was prepared using class A glassware by dissolv-
spectra were acquired in positive ion mode and the instru- ing TMA hydrochloride in 1000.0 mL of deionized water.
ment was set for narcotics detection. The data acquisition All standard solution concentrations were corrected for 98%
frequency was 80kHz and every spectrum had 1600 dataanalytical purity. Solutions were homogenized for 2h on a
points. The acquisition data board was a National Instru- stirring plate using a magnetic stirrer.
ments AT-MIO-16XE-10 board connected to a Pentium Pro  The juice from spoiled meat was collected using glass
200 Mhz computer. A home-built LabVIE®V 5.1 virtual fiber filter disks (Fisher Scientific, Pittsburgh, PA; diameter
instrument was used for data acquisition. The shutter grid 4.25 cm). The blank glass fiber filter disks were sampledinthe
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Fig. 1. Schematic representation of Barringer IONSCAN 350 adapted[88m
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thermal desorber unit of the IONSCAN until no background of [0.5, 6] ms from every point in the spectrum. Because
signal was observed from any volatile contaminants before charge is conserved in IMS, each spectrum was normalized
use. to unit area. After selecting five spectra from each measure-
The chicken meat was dated by the labeling on packagement set, the model building set comprised 90 spectra and
that gave the day it was made available for sale. The liquid the validation set comprised 75 spectra.
from the container holding the chicken meat was collected  All data sets were mean-centered before PCA analysis.
for the experiment. The liquid from the container was water- The first PC correlates well with the age of the chicken
based and represented a noninvasive sample of the chickefjuice. Discriminant PLS was used to build a classification
meat. This liquid is hence referred to as chicken juice. The model[39]. Two binary target matriceA were used. The

pH of the chicken juice was determined to be 5.8. first grouped the spectra into good, fair, and bad, and the
Chicken juice in 10 mL aliquots was delivered to sterile second grouped the spectra into good and bad classes.
polystyrene test tubes 16 nx125 mm, with screw cap lids Cross-validation of the training set was used to optimize

(Fisher Scientific, Pittsburgh, PA). The test tubes with juice the PLS model. Cross-validation removed each measurement

were centrifuged for 10 min at 4000 rpm with a centrifuge. as opposed to spectrum so all five replicate spectra were

After centrifuging the chicken juice only the clear part of the removed for each cross-validation step. The validation data

liquid was decanted and used for the experiments. setwas used for prediction. The largest estiriatkesignated
Samples of TMA solutions and meat juice were collected the class of spectruin FURES has an advantage over other

with a 10-pL Hamilton syringe (Hamilton Company, Reno, supervised classification methods in that it does not have to

NV). TMA solutions of 5uL were spotted on the fiber glass configure any parameters during model building, such as the

sample disk that was inserted into the ion mobility spectrom- number of latent variables in PLS and training cycles with

eter thermal desorber. Onlyud of chicken meat juice was artificial neural networks. The classification tree was built

spotted on the sampling disk because the main goal was toand evaluated using the same matrices as those used for PLS.

detect the lowest TMA concentration in the sample juice.  The same criterion as for the PLS models for class designa-
For the chicken juice, two sets of data were collected. tion was used, the maximum estimate.

The juice was stored in a refrigerator at 6@ and 2-mL

aliquots of juice were removed, put in glass vials that were

closed with screw caps and allowed to decompose at roomy4, Results and discussion

temperature. Each juice vial was aged for a different number

of days during a five days period. The firstvialwas agedfor5  The reduced mobility calculated for TMA was

days, the second for 4 days, the third for 3 days, the fourth for 236cntV-1s1 and Corresponded to a value reported in

2 days and the fifth was aged for 1 day. On the sixth day the the literature[31]. The scores on the first two principal

spectra were collected for each vial. A random block design components of the model-building data set and the validation

was used with five replicates for collecting spectra. This data set are given iffrigs. 2 and 3, respectively. The first principal

set was used for model building. component spans the age of the samples. After the second
The second data set was used for validation. Aliquots of day, the TMA peak was large enough to saturate the

5mL juice were placed in a glass vial closed with a screw cap instrument so although there is some separation of days 2—4,
and allowed to decompose at room temperature. For a 5-day

period, spectra of chicken juice were collected daily from the

vial in the hood, and analyzed using a.ll aliquot applied 0.03 'g;ggg 5
to the sampling disk, same sample volume as in the previous 0.02 [C-Day2 5 IZED% o A
- Day
method. 001 [E “Daya y - C £ A
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Several hundred spectra were acquired for each measure- £ 20.03 |
ment. The model-building data set comprised 18 IMS mea- 004t
surements of chicken juice. The validation data set comprised I
15 IMS measurements. The measurement sets of spectra 005
were preprocessed and then the five spectra with the largest ~ %% A
TMA peak intensities were extracted. The first preprocess- 0.07 % Y 5 005 o

ing step eliminated drift time measurements less than 0.5 ms,
to remove the gating pulse from the spectra. Each spectrum
comprlsed 1560 data pomts after removal of the gf?ltlng pU|Se' Fig. 2. Principal componentscores for the model-building data set of positive
Each specftrum was baseline corrected by subtracting the avern monility spectra of aged chicken juice. Numbers in parenthesis represent
age of the intensities of the spectra calculated from the rangethe percentage of principal components in the data set.

PC #1 (76%)
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Fig. 3. Principal component scores for the validation set of positive ion
mobility spectra of aged chicken juice. Numbers in parenthesis represent

the percentage of principal components in the data set. Fig. 4. FURES classification tree for fresh (1), fair (2), and bad (3) classes.

the spectral scores were overlapping. Therefore, different Table 2
grades of meat spoilage were grouped into fresh, fair, and Confusion matrices for prediction of IMS spectra of chicken juice in two
bad. The model-building and validation data sets are very ¢/3sses: fresh and bad

similar even though they were collected 6 days apart. Fresh Bad
Using cross-validation by measurement and not replicate, (a) Confusion matrix generated using the predicted errors in PLS method
the optimum number of latent variables was 9 for the three gfedSh g ég
al

class matrix. The PLS results for the validation data are
presented in a confusion matrix given'ﬁab|e ]_(a)_ The con- (b) Confusion matrix generated using the predicted errors in FURES
fusion matrix for the three classes gives the actual class as _ Method
. - . Fresh 13 2
rows and estimated class by column. A similar confusion ¢ 0 60
matrix was generated for FURES classification. The FURES
confusion matrix is given iffable 1(b). FURES classification
tree for three classes (fresh, fair, and bad) is giveRiin 4. window based algorithm. Two criteria were evaluated. The
These results suggested that the good and fair classes wertirst method classified any spectrum with a TMA peak inten-
confused by both methods, although the FURES method wassity larger than the maximum peak intensity in the spectra
superior to PLS. from the fresh class of the training set as bad. The second
The fair and bad classes were combined into one class, andtriterion classified any spectrum below the minimum peak
the PLS and FURES models were built for the two class binary intensity in the spectra from the bad class of the training set
target matrix. The optimum number of latent variables in the as good. The reason two criteria were evaluated was that the
PLS model was 8 using the same cross-validation procedure.TMA peak intensities were overlapping among the spectra in
Besides FURES, a univariate classification model was alsothe training set that corresponded to the fresh and bad quality
used as a control that processed the TMA peak intensity. Thisclasses.
method was the same that would be used in a classical peak- For the two class models, the results are reported in
Tables 2 and 3. as confusion matrices. The PLS model failed

Table 1
Confusion matrices for classification by IMS in three classes: fresh, fair, and Table 3
bad Confusion matrices for prediction of IMS spectra of chicken juice in two
Fresh Fair Bad classes: fresh and bad using the TMA peak height
(a) Confusion matrix generated using the predicted errors in PLS method Fresh Bad
Fresh 1 13 1 (a) Using the intensity threshold of the largest TMA peak from the spectra
Fair 0 15 0 of the good class
Bad 0 45 0 Fresh 11 4
. . . . . Bad 2 58
(b) Confusion matrix generated using the predicted errors in FURES
method (b) Using the intensity threshold of the lowest TMA peak from the spectra
Fresh 10 5 0 of the bad class
Fair 0 15 0 Fresh 10 5

Bad 0 0 45 Bad 1 59
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Fig. 6. IMS spectrum of TMA in fresh chicken juice. Reaction ion peak
(RIP) is nicotinamide.

Fig. 5. FURES classification tree for fresh (1) and bad (2) classes.

for the validation data set. This failure may have resulted
from overfitting of the PLS model by the cross validation
procedure, but the PLS results were in general poor for the
validation set regardless of the number of latent variables
used in the model.

The FURES classification tree for two classes (fresh and
bad) is given inFig. 5. The control results of using univari-
ate TMA peak heights are given irable 3. In this case, the
peak window technique worked better than the PLS model,
but not as well as FURES. The reason is that FURES also
takes advantage of other peaks that may appear in the spectra
besides TMA. These additional peaks could be other micro-
bial products or oligomeric TMA ions.

Trimethylamine content in meat juice was evaluated quan-
titatively using a random block design. The detection limit
of the ion mobility spectrometer was determined using a dard TMA solutions added to 990 of chicken juice.
calibration line of standard TMA solutions in water. For For every sample, three replicates were obtained and TMA
each standard, three replicates were analyzed in a randonpeak intensity was evaluated using the same procedure as
block design. The ion mobility spectra acquired from fresh for the TMA calibration line. Using the standard addition
chicken juice and a {LL of a 3ppm TMA solution is given  method, the TMA mass was 0460.2 ng and corresponded a

in Figs. 6 and 7, respectively. to 0.6+ 0.2 ppm TMA concentration in chicken juicgig. 9
For each measurement, the TMA concentration profile

was used to select a set that comprised between 50 and 100
spectra to be averaged. Therefore, each measurement fur-
nished a single average spectrum for which the TMA peak
was the largest and stable. The peak intensity of TMA from
this average spectrum was used for calibration. The calibra-
tion line with 95% confidence interval was used to define the
limit of detection. The detection limit was the concentration
where the lower limit equals the upper limit at the ordinate.
The limit of detection within this interval was 0.6 ng. The
sensitivity was 1.12£0.15V ng ! with a 95% confidence
interval.Fig. 8 gives the TMA calibration line.
_The TMA Concenj[r_atlon .m chicken juice was calculated Fig. 8. Calibration line generated for pure TMA solutions in order to deter-
using standard addition with 3L of the aqueous stan-  mine the lowest detection limit for TMA.

Fig. 7. IMS spectrum of 3ppm TMA solution. Reaction ion peak (RIP) is
nicotinamide.
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Fig. 9. Calibration line generated for standard addition method. Standard

TMA solutions were added to meat juice in order to evaluate quantitatively
initial TMA concentration in juice.

gives the calibration line for TMA concentration in chicken
juice.

5. Conclusions

This work demonstrated that trimethylamine in chicken

juice (i.e., external liquid) can be detected directly and quan-

titatively evaluated using ion mobility spectrometry. The
lowest detected TMA concentration in chicken juice was
0.6+ 0.2ng and the lowest detection limit for TMA stan-
dard solutions was 0:80.2 ng. The method proved to be

635
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